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Abstract-The combined effect of density, diffusivity and viscosity variations and of the velocity at 
the interface upon the rate of mass transfer from a rigid surface has been investigated by a perturbation 
method. The analysis does not consider natural convection, and is restricted to systems of high Schmidt 
number (lower limit estimated at SC = lOO), for which the velocity profile in the diffusion boundary 
layer is linear. The diffusion equations for three diverse flow geometries, the rotating disk, the flat plate 
and the falling liquid film, are identical in form at high Schmidt numbers; the effect of the particular 
geometry is represented by a single parameter, which is characteristic of the limiting slope of the 
velocity profile near the surface. Application to three typical binary systems indicated that these 
phencmena can alter the Sherwood number by as much as 30 per cent from its value in the absence 
of property variations and interfacial velocity. The corrections for variable properties and interfacial 
velocity may be applicable to a much wider class of solid boundary flows than the three cases 

considered. and to liquid-liquid systems for which the interface is rigid. 
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F(v), 
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H(T). 

IO(X), 

NOMENCLATURE? 

constant of proportionality between 
the parallel velocity component and 
normal distance; 
constant of proportionality between 
the parallel velocity component and 
normal distance for all properties 
constant at their wall value; 
molar concentration, g-moles/cm3; 
diffusion coefficient, cm2/s, defined 
by equation (A.6) ; 
dimensionless radial velocity com- 
ponent for a rotating disk, equation 

(8) ; 
dimensionless velocity for flat-plate 
flow, defined by equation (26); 
acceleration of gravity, cm/s2; 
defined by equation (1 l), equal to the 
dimensionless normal velocity for 
rotating-disk flow for the constant 
property, zero mass transfer case ; 
equal to J,X exp [- t”] dt; 

t This table does not include the special notation 
used in the Appendices, Rhich is defined in their ac- 
ccmpanying text. 

kc, 

K 
L(rlL 
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m, 

M, 
II, 

N. 

R, 

r, 

S, 

mass-transfer coefficient, defined by 
equation (60), cm/s; 
defined by equation (64) ; 
function describing the effect of 
density changes on the normal velo- 
city for flat-plate and rotating disk 
flow, equation (16); 
length unit used to make the normal 
distance dimensionless, cm, equations 
(7), (25) and (33); 
exponent in equation (59), equal to 
4 for the flat-plate and rotating-disk, 
and to Q for falling-film flow; 
molecular weight of the solute; 
mass flux of solute relative to sta- 
tionary observer, g/cm2 s; 
molar flux of solute relative to 
stationary observer, g-mole/cm2 s, 
equal to n/M; 

ratio of e’(0) to e*‘(O). defined by 
equation (48) ; 
radial distance on a rotating 
disk; 
ratio of Jle solvent to solute mass 
fluxes : 
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SC, 
S/l, 

w. 

u, 

V. 

L’, 

W. 
x, 

Schmidt number, VI D ; 
Sherwood number, defined by equa- 
tion (62) ; 
velocity component parallel to sur- 
face, cm/s ; 
mainstream velocity for flat-plate 
flow, cm/s; 
mass average velocity vector of the 
fluid ; 
velocity component normal to sur- 
face, cm/s; 
mass fraction of the diffusing solute; 
distance in the direction of flow for 
a flat plate or falling film, cm; 
distance normal to surface, cm. 

Greek symbols 
constant of proportionality between 
the dimensionless parallel velocity 
component and dimensionless normal 
distance ; 
cross-product perturbation func- 
tions; 
mass flow rate per unit perimeter, 

g/cm s; 
density perturbation parameter, de- 
fined by equation (3); 
diffusivity perturbation parameter, 
defined by equation (4): 
interfacial velocity perturbation 
parameter, defined by equation (22) ; 
dimensionless normal distance from 
the surface, defined for the three 
cases by equation (7) (25) and (33); 
dimensionless mass fraction, 

(W- WcO)(CV, - W,); 
angle of inclination from the vertical 
of the wall down which the falling 
liquid film flows; 
viscosity, P; 
kinetic viscosity, cm2/s; 
solution density, g/cm3; 
interfacial velocity perturbation func- 
tions : 
dimensionless normal distance, de- 
fined by equation (39); 
diffusivity perturbation functions; 
density perturbation functions; 
rate of rotation of disk, rad/s. 

Subscripts 
0, at the surface; 

a, in the free stream. 

Superscripts 
, 
2 denotes differentiation with respect 

tax; 
* > denotes constant properties and zero 

interfacial velocity. 

INTRODUCTION 

THIS study presents a perturbation scheme for 
solving the diffusion equation when the density 
and diffusivity are known functions of concentra- 
tion. The method requires that these two proper- 
ties vary exponentially with mass fraction over 
the composition range of interest, a limitation 
which is fortunately followed by many binary 
liquids. 

The diffusivity of a binary liquid system may be 
a very strong function of composition; a change 
over reasonable concentration limits by a factor 
of 2 is not uncommon. Liquid densities, on the 
other hand, are generally not too sensitive to 
composition unless extremely large driving forces 
or solutions of the heavy elements are con- 
sidered. t 

The effect of the velocity generated by the 
mass-transfer process is accounted for in the 
same manner as has been presented elsewhere 
[l-3]. The restriction of high Schmidt number 
imples that the diffusion boundary layer contains 
only the linear portion of the velocity profile. 
The effect of viscosity variation is included by 
adaption of a simplification due to Schuh [4]. 

Three different flow geometries are considered : 
flat-plate flow; rotating-disk flow, which does not 
require the simplification of boundary-layer 
theory; and the short-contact-time falling liquid 
flow which, despite the lack of a true hydro- 
dynamic boundary layer, can be treated by the 
same method. The approach is believed to be 
sufficiently general to include laminar flows other 
than the above-mentioned three. 

t In gases, the situation is just reversed; for a perfect 
gas mixture, the binary diffusion coefficient is a weak 
function of composition, but, since the density is pro- 
portional to the mean molecular weight, large variations 
of this property with composition are often encountered. 
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The diffusion equation can be written 

pv. ce = v . (pme) 

or 

as:t 

(1) 

For the radial velocity : 

I.4 = YW F(7)). (8) 
Since the density is a function only of com- 

position, and since the latter is independent of 
radius, the density depends only upon the normal 
distance. Therefore the over-all continuity equa- 
tion can be written as: 

with the definitions 

cP = -(IV,- W~)~d~~=ln(p~lpO) (3) 

Eg=-(WO- W&J k gW = In (Dn/Do). (4) 

Equation (2) becomes 

we - g + ccp + 
l 

+ve 
I 

. ve = 0. (5) 

It will be assumed that both cp and ED are 
independent of composition, or that semi-log 
plots of p and D against W are linear between 
W, and Wm. 

ROTATING-DISK FLOW 

Millsaps and Pohlhausen [5] have shown that 
the steady-state, constant-property energy equa- 
tion (in the absence of frictional dissipation) 
depends only upon the distance normal to the 
surface and is independent of the radius. The 
constant-property diffusion equation is of the 
same form and satisfies the same dimensionless 
boundary conditions; hence it too is one- 
dimensional. Since the property variations follow 
the concentration profile, the relation governing 
variable-property mass transfer from a rotation 
disk is one-dimensional as well, and from 
equation (5) : 

d28 _- 
dy2 

; + (ep + ED) ;; 
> 

f = 0. (6) 

The following dimensionless quantities are 
introduced [6a] : 

For the normal distance: 

(7) 

t A derivation of equation (1) and a discussion of its 
applicability to liquid-phase mass transfer is presented 
in Appendix A. 

au a 
p Fr + F + -- (PO) = 0. 

aY 
(9) 

Introducing equations (7) and (8) into (9) and 
integrating between zero and 77 : 

Now define the function H(T) by: 

(11) 

and substitute (11) into (10) : 

u = ; p. + l/(wvo) j q dH p J o PC+. (12) 

Integrating the last term of equation (12) by 
parts : 

1 17 

--I 
H2dv. (13) 

PO dv 

Setting 
t’o = d\/(vow) fW’), (14) 

substitution of equations (13) and (14) into 
equation (12) yields : 

u = d(‘ow) H(T) [1 - Url)l (1% 
where 

L(d = -&) J 
‘7 

H(v) “f dv. (16) 
0 drl 

Substituting equations (7) and (15) into equation 
(6), there results : 

SC, H(q) I.1 - L(r)1 

+($+ l D)$);=o. (17) 
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At large Schmidt number the greatest portion 
of the concentration drop occurs quite close to 
the surface, and the diffusion boundary layer is 
much thinner than the hydrodynamic boundary 
layer. In the former region, the radial velocity is 
satisfactorily represented by the first term of its 
power-series expansion about 7 = 0, or u is 
proportional to y. Equations (7) and (8) indicate 
that in dimensionless form this reduction leads 
to: 

F(T) = Q-7. (18) 

For the constant-property, zero mass transfer 
case, Sparrow and Gregg [7] have shown this 
approximation yields results within 7 per cent 
of the exact solution at SC = 100. 

H(T) can be obtained by integration of 
equation (11) as : 

H(T) = H(O) - a$-. 

According to the definition of the 
coefficient, the interfacial velocity? is 

- D,(~W~Y), 
l!o = ~l~gET_w, 

or, in dimensionless form: 

where 

w, - w* 
Er = I/clS)- w, 

now be written as: 

d28 

(22) @+ 

Combining equations (19) and (21) with 
equation (17), there results: 

(19) 

diffusion 

(20) 

(21) 

OLANDER 

compared to azOjayz. Similarly, the physical 
meaning of the boundary-layer assumptions 
also permits neglecting (L%/ax)2 compared to 
(a0/a_p)2. With these two simplifications, equation 
(5) becomes: 

a28 u ae 

1 
as) 2e _ - _~ ~~_ - 

ay D ax i + bp + 4 ayi 2T = 0. (24) 

The usual dimensionless reduction of the 
flat-plate equation employs the new variables: 

7=E’ -! Ji 1 VOX, 

and 

f’(Y) = u/u. (26) 

As in the case of the rotating disk, the over-all 
continuity equation can be integrated to give an 
expression for ZJ (see Schuh [4]): 

t, = 3 {?7f’(d -f(v) [l - %)I)- (27) 

where L.(q) is given again by equation (16) with 
H replaced by f, and P,, is:: 

The diffusion equation for the flat plate can 

11 - Udl 

de de 
- (cP + ED) .~ ~~- = 0. (23) 

i drl dv 

FLAT-PLATE FLOW 

The simplification required to reduce the 
constant-property diffusion equation to its 
boundary-layer form involves neglecting a20/ax2 

t The l/(1 + S) ~ IV’, term in equation (20) presumes 
the applicability of a Stephan-Maxwell type definition of 
the diffusion coefficient to a binary liquid. Equation (20) 
can be derived from equations (A.24, 6) of Appendix A. 

Within the diffusion boundary layer at high 
Schmidt numbers, u can be assumed proportional 
to J’, or: 

f'(q) = 4a77. (30) 

Integrating: 

fk!? = f!"' + a72 
-3 (31) 
L L 

With f(0) from equations (20) and (28), substitu- 
tion of equation (31) into equation (29) yields 
equation (23). 

t The restriction that 0,) vary inversely as , x agrees 
fairly well with the condition of constant mass fraction 
at the wall [I]. 
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FALLING-FILM FLOW 

Following Bird’s [8] development for the 
constant-property case, it will be assumed that 
diffusion in the x-direction is negligible, and 
that the u-velocity component is due only to 
diffusion. With the additional assumption that 
(36/8x)2 < (L%Y/@)“, equation (5) becomes 

A dimensionless distance is defined as : 

.q=y a, ( 1 
l/3 

VOX 
(33) 

where 

ffo = (g cos ~)2’3(3r)1/3p01’31~~2’s. (34) 

In the constant-property case, the velocity 
parallel to the wall is a parabola with its vertex 
at the free surface. Close to the wall, however, 
u can be represented by the linear term alone, 
or 24 = a,y. For the variable-property case 
considered here, it will be assumed that u is still 
linear in y, but with a constant of proportionality 
determined by the magnitude of the density and 
viscosity variations through the dill&ion 
boundary layer. Thus: 

U = ay. (35) 

Contrary to the rotating-disk or flat-plate flows, 
it is not possible to express the normal velocity 
in terms of the dimensionless distance 7 and the 
correction term L(q), as in equations (15) and 
(27). The effect of variable density on the over-all 
continuity equation can be expressed by the 
L(T) integral only for those flow situations for 
which both the constant-property velocity and 
concentration distributions are functions of the 
same dimensionless variable 7. In the falling-film 
case, this is not true; the parallel velocity is not 
a function of x, as indicated by equation (35) 
with a = a,. The composition, on the other hand, 
is a function solely of the similarity variable 
v of equation (33). Since the u-term in equation 
(32) is identically zero in the absence of mass 
transfer, the normal velocity with mass transfer 
will be identified solely with the diffusional 
velocity, or oo. This is equivalent to neglecting 
the effect of compressibility on the over-all 

continuity equation or to neglecting L(q) 
compared to unity in the rotating-disk and flat- 
piate derivations. 

Substituting equations (20), (33) and (35) into 
equation (32), the diffusion equation becomes: 

If the geometry-dependent constant for the 
falling-film system is taken as 

la 

““G (37) 

then equation (36) is identical to equation (23) 
with L(q) = 0. (No L(y) term appears in 
equation (36) since u has been assumed equal 
to 00.) 

~PLICA~ON TO OTHER FLOW 
GEOMETRIES 

The di~usion equations for the three flow 
geometries have been reduced to equation (23), 
in which only the numerical value of the para- 
meter a identifies the particular hydrodynamic 
system. It is reasonable to expect that equation 
(23) applies to a wider class of Iaminar flows than 
those considered here-even to flows which are 
too complex to permit calculation of the para- 
meter a (or the shear stress at the surface). Only 
two restrictions are placed upon the flow: that a 
diffusion boundary layer exist, and that the 
velocity parallel to the surface in this region be 
linear in normal distance. These two require- 
ments imply that the constant-property, zero- 
interfacial-velocity diffusion equation is of the 
form : 

da0 d6’ - 
d? 

+ a*sc?j2 - = 0. 
drl 

(38) 

where 7 is some dimensionless distance charac- 
teristic of the particular flow. Equation (23) is 
merely an expanded form of equation (38) in 
which property variations and an interfacial 
velocity have been considered. Any laminar flow 
for which the diffusion equation is reducible to 
equation (38) can be treated by the method 
outlined here. 
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In the subsequent analysis, the L(y) term in 
equation (23) (which applies to both rotating- 
disk and flat-plate flow) will be neglected com- 
pared to unity. This simplification is tantamount 
to assuming that the over-all continuity equation 
retains its incompressible form despite density 
variations. The same assumption has already 
been invoked in deriving equation (36) for the 
falling film, since the effect of compressibility on 
the over-all continuity equation is not expressible 
in terms of L(y) for this case. It is shown in 
Appendix B that neglecting L(q) has but a modest 
effect on the final result. With this assumption, 
and a new distance variable defined by 

equations (23) and (36) become: 

SOLUTION TO THE GENERAL DIFFUSION 

EQUATION 

The diffusivity ratio in equation (40) can be 
approximated by the following means: integrat- 
ing equation (4) from 0 = 1 to 0 there results 

D0 -= 
D 

e-‘o (l-0) z 1 - l g(l - 0) 

+ +;, (1 - e>z + . . . . (44) 

Within the framework of the perturbation 
analysis. which does not permit large variations 
of 6’ from the zero mass transfer, constant- 
property profile, the series of equation (44) will 
be carried only through the second-order term 
and the true concentration profile approximated 
by 0” of equation (43). The diffusivity ratio can 
then be written as 

3x2 + Fy7eyo) 
I 

Inserting this relation into equation (40). one 
obtains the following non-linear equation for 0. 

- (EP + ED)e 11 
1 

8’ = 0 (40) fir + [[3X2 + cveyoj-j I - 
[ j$+ 

where the primes denote differentiation with 
respect to x. The boundary conditions are: 

e(o) = 1, e(m) = 0. (41) 

Equation (40) is analogous to the variable- 
property energy equation derived by Acrivos [9]. 

The transformation of equation (39) relieves 
the diffusion equation of dependence upon 
specific values of a and SC. Equation (40) is 
independent of the particular geometry and of 
the Schmidt number (provided the latter is 
large). 

For cp = ED = EV = 0, equation (40) reduces 
to 

e*” + 3x2e*f = 0. (42) 

The solution is 

e*(x) = 1 - ~ldXY~o(~). (43) 

Equation (43) (or its equivalent) has been 
derived previously for particular geometries 

17-91 

The boundary conditions are given by 
equation (41). 

A solution to equation (46) will be sought as 
a perturbation expansion of e in terms of l P, CD 
and 6~. With all second-order terms included, 
such a series can be written as: 

e(X) = e*(X) + wX> ED + %(X> cp i- $h(X, El’ 

+ Ydx) <a + Q,(x) $ + 42(x) +. 

+ p(X),,,,D + Y(Xb,W + s(X)EDW. (47) 

e*(x) obeys the same boundary conditions as 
e(x), i.e. those of equation (41). The remaining 
functions are to be zero at both x = 0 and 
x = cc. 

Upon substituting equation (47) into equation 
(46) and setting the coefficients of the various 
powers of ED,Ep,EV, ca> etc., equal to zero, 
linear differential equations for each of the 
coefficients of the E’S in equation (47) are 
obtained. These equations can be solved succes- 
sively to obtain 0*, &, Q,, . . . 6 in terms of 
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integrals with x as the upper limit. The integrals, 
which have been evaluated by machine computa- 
tions, determine the concentration profile e(x) 
for any combination of cp, ED and up. Because 
the slope at the surface determines the mass- 
transfer rate, only e’(O) is of interest. Expressed 
as the ratio of the actual slope to that which 
would exist in the absence of property variations 
and interfacial velocity, the solution to equation 
(46) can be written as: 

UO) 
R=8*‘o=1+~~p + 0.262ro - 056&r- 

T + 6; + O+&; + O-407+ + 0.215~~~~ 

- 0.566~~~~ - 0.232~1~. (48) 

Several interesting qualitative conclusions can 
be drawn from equation (48). For equal values 
of the perturbation parameters, cp and ED, the 
density variation is approximately twice .as 
important as the diffusivity change. Formally, 
this is due to the D,/D term in equation (40). 
The relative magnitude of the density and 
diffusivity effects and the positive sign of their 
first-order perturbation terms can be interpreted 
physically as follows: The rate of mass transfer 
normal to the surface can be written as: 

The bracketed term in the above expression has 
the units of a velocity; hence, for a fixed value 
of this term, an increase in density increases the 
transfer rate.1 Equation (48) gives the ratio of the 
actual composition gradient at the surface to 
that which would prevail if all properties re- 
mained at their surface values. Equation (3) is a 
measure of the increase in density from the 
surface towards the free stream. Since a qualita- 
tive examination of equation (49) implies that 
an increase. in density over the surface value 
should increase the transfer rate, the sign on the 
Q,, term in equation (48) must be positive to 
reflect the physical situation. 

t This is entirely analogous to the flow of a single 
substance in a duct of unit cross-sectional area, in which 
the rate at which mass passes a fixed point is the fluid 
density times the average velocity. If the velocity is 
maintained constant, the mass flow can be increased 
simply by increasing the density of the fluid. 

The positive sign on the bJ) term in equation 
(48) merely confirms the physically obvious 
conclusion that any increase in the diffusion 
coefficient will result in higher mass transfer. 
Since a positive value of ED, by equation (4), 
signifies larger diffusivities in the boundary layer 
than at the wall, then the enhancement of the 
transfer rate must appear as a positive term in 
equation (48). However, while the density affects 
both the diffusive and convective components of 
the velocity in equation (49) the diffusion 
coefficient appears only in one term. Therefore, 
the variation in D will affect the transfer rate 
only in that region of the boundary layer where 
the convective component is small, i.e. near the 
surface. On the average, an increase of diffusion 
coefficient will not be as effective as an equiva- 
lent increase in the total density. The coefficient 
of cp should be and is larger than that of ED in 
equation (48). 

The effect of a positive interfacial velocity is 
to thicken the diffusion boundary layer, thus 
increasing the resistance to mass transfer above 
that which would exist if the interfacial velocity 
were zero. For this reason, the coefficient of 
f~ in equation (48) is negative.: 

Except for the l “, term, the coefficients of the 
pure second-order terms are quite small. For 
extreme values of E,, = O-5 and ED = 1, for 
example, they are less than 5 per cent of unity. 
This suggests that the third-order terms will be 
negligibly smafl. The cross-product coefficients 
are relatively large, indicating a significant degree 
of coupling of the three perturbation constants 
in equation (40). They are of the same order of 
magnitude as the lowest first-order coefficient of 
the perturbation constant they contain; the 
cpch and EDEV coefficients are (in absolute 
magnitude) nearly equal to each other and to 
the coefficient of ED. The coefficient of ~,,crr is 
identical to that of FV, which in turn is close to 
that of cp. 

Considering the effect of each of the three 
perturbation constants independently, it appears 
that equation (48) will be in greatest error in 
estimating the effect of interfacial velocity, since 
the coefficient of c:_ is much larger than that of 

: The magnitude of this coefficient, 0.566, is identical 
to that obtained by Merk [2] by a similar perturbation 
method for a flat plate. 



772 DONALD R. OLANDER 

either $ or c”,. Hence the range of perturbation 
constants for which equation (48) is valid would 
be greatest for CD and smallest for ry. Therefore, 
the two-term approximation to the effect of cy 
on R was compared to an exact numerical 
solution of equation (40) with cP = EI) = 0: 

0” + [3X2 + &‘(o)]s’ = 0. (50) 

This relation is, as before, subject to the 
boundary conditions of equation (41). The 
solution is: 

- e’(O) = [f: exp (- x3 + ~e’(O)~f d&l. (51) 

For each value of EV, equation (51) can be solved 
by assuming a value of P(O), computing the 
integral on the right-hand side, and comparing 
the assumed e’(O) with the reciprocal of the 
calculated integral. When the two agree satis- 
factorily, 6’(O) for the particular w under 
consideration is determined.? 

The solution of equation (51) is presented 
graphically in Fig. 1 as [~‘(O)/~*‘(O) - l] vs. 
EV (solid line), and is compared to the two-term 
approximation obtained from equation (48) 
with ED = cp = O.$ This plot indicates that the 
perturbation approximation carrying two terms 
is quite good for -0.4 I EV 5 04. Therefore, 
the effect of interfacial velocity on the mass- 
transfer rate can be evaluated directly from 
equation (48) for values of the parameter cv in 
this region. For 1 EV/ > O-4, the solid line in Fig. 1 
should be used in place of the EV and C; terms 
in equation (48). 

Similar independent evaluations of the cP and 
ED terms in equation (48) were not obtained. 
However, rough estimates of the ranges of 
validity for these two parameters can be ob- 
tained by comparison with the result of the EV 
analysis. The two-term expansion in EV fails for 
1~~1 > 0.4, for which the c;. term in equation 
(48) is 0065. If this figure is taken as the maxi- 
mum permissible value for the 6’ and E: terms 
in equation (48) as well, then [e,] 2 0.6 and 
1 C:D~ 2 1.2. These values should be taken only 
as tentative limits, for they do not include the 

____.___._ 
iFor additional discussion concerning equation (50), 
see [IO]. 

$ The solid line agrees with the analogous computation 
of Merk [2] for flat-plate flow. 

05 

-03 
-06 -d4 -02 Eo, 02 04 06 

FIG. I. Comparison of the effect of interfacial velocity 
as calculated by the exact solution equation (51) and 
the two-term apprL ximation equation (48) with 

E@ = fg = 0. 

influence of the cross-product terms, which will 
be appreciable when any two of the ~ert~bation 
parameters are large. For this case, the limiting 
values of cp, ED and EV will be smaller than those 
suggested above, which consider one effect at a 
time. 

THE EFFECT OF VARIABLE VISCOSITY 

The preceding solution of the diffusion 
equation requires a linear velocity distribution 
within the diffusion boundary layer. However, 
the existence of viscosity variations perturbs this 
linearity, no matter how large the Schmidt 
number; equations (18), (30) and (35) represent 
approximations which improve as viscosity 
variations decrease. 

Analysis of three flow situations has revealed 
that the sole dependence of the ditlusion 
equation upon the particular flow geometry is 
contained in the parameter a, which is pro- 
portional to the shear stress at the surface. It has 
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been shown elsewhere [2, lo] that, in the limit of 
high Schmidt number, the shear stress at the 
surface is independent of the interfacial velocity 
induced by the diffusion process, or a is not a 
function of EV. The parameter a is a function of 
viscosity and density changes across the bound- 
ary layer and of a*, the limiting slope of the 
dimensionless velocity in the purely hydro- 
dynamic situation (no mass transfer). 

Acrivos [9] and Schuh [4] have shown that 
physical property variations accompanying 
temperature changes within a thin thermal 
boundary layer do not affect the shear stress, 
which behaves as if the properties of the free 
stream extended directly to the surface. The 
product of the viscosity and the velocity gradient 
remains constant, and not the velocity gra- 
dient, or 

where the left-hand side is the actual shear stress 
and the right-hand term represents the shear 
stress which would exist at the same point if the 
free-stream properties extended directly to the 
surface. This latter term is directly related to a*, 

since it describes a constant-property system. 
Taking the flat plate as an example, the 
dimensionless form of equation (52) becomes 

f”(T) = 4a* 
J( 1 

z c”“. 
CL 

(53) 

The integrated form of equation (53) is: 

f’(7) = 4a* Ji 1s 2 ips. (54) 

This relation, rather than equation (30), is a 
proper description of the parallel velocity close 
to the surface of a flat plate in the presence of 
viscosity or density changes. 

If, however, it is assumed that 

Equation (30) results if a is defined as 

a = a* 
P&m 

&I POW0 . 
(57) 

Schuh has shown that the simplification rep- 
resented by equation (55) is satisfactory for heat 
transfer in flat-plate flow with eightfold viscosity 
variations at a Prandtl number of 10. Equation 
(55) essentially assumes that the viscosity 
remains constant at its wall value throughout 
the diffusion boundary layer and changes 
abruptly to pm at the outer edge of this region. 
The success of this approximation is probably 
due to the importance of the region extremely 
close to the wall, where TV 2: po. A sketch of the 
velocity profiles involved is shown in Fig. 2. The 
lower line is the profile which would result if the 
bulk viscosity persisted to the surface. The 
middle curve represents the actual distribution. 
The approximation of equation (55) leads to the 
linear profile represented by the dashed line of 
the figure. 

. Flow boundary layer------i 

Diffusion 
boundary 1 

- 

1 Pm > PO 1 

1 ,,,-Velocity proflle used in calculations 

Actual velocity profIle 

Velocity proftle for p = pm 

FIG. 2. Schematic velocity profiles within the 
diffusion boundary layer. Viscosity in free stream 

greater than at the wall. 

- N !? P 
- 2 

CLm W 

equation (54) becomes 

(55) 

f’(q) = 4a* 

Entirely analogous computations on the 
radial-shear-stress component on a rotating 
disk again lead to equation (57). 

For the falling-liquid film, which is not a 
boundary-layer flow like the flat plate and 
rotating disk, the applicability of equation (52) 
is not immediately evident. However, it can be 

(56) shown that for arbitrary viscosity and density 
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variations which are restricted to a region close 
to the wall, 

PmW 

( 1 

l/3 
axa* ~ (58) 

POP0 

In general, it appears that the ratios of the 

offers no resistance to slight adjustments in film 
thickness required by property variations near 
the wall. In pipe flow, on the other hand, the 
fluid is completely restricted by the walls of the 
tube. 

density-viscosity products are raised to the same 
power as is the kinematic viscosity in the 
similarity transformation which defines 7 [e.g. 
equations (7), (25) and (33)]. Thus 

THE NET EFFECT OF PROPERTY VARIATIONS 

AND INTERFACIAL VELOCITY ON THE RATE 

OF MASS TRANSFER 

The mass-transfer coefficient is defined by: 

P&m a=a*-- 
i i 

m 

(59) 
POP0 

N ES kc(Co - Cm). (60) 

where nz = 3 or 4 for the cases considered here. 
Physically, equations (57) and (58) result 

from the fact that the shear stress is a gross 
characteristic of the flow; it depends upon the 
behavior of the how field as a whole and is not 
appreciably affected by variations which are 
confined to a highly localized region of the 
system, as is the case with property changes in a 
very thin diffusion boundary layer. 

However, analysis of the effect of variable 
viscosity and density on laminar pipe flow [l 1, 
121 indicates that equation (59) is not valid for 
this particular hydrodynamic situation. At high 
Schmidt (or Prandtl) numbers, the ratio of a to CL* 
(or the ratio of the actual velocity gradient at 
the wall to that which would exist for constant- 
property flow) equals pm/y,, irrespective of 
density changes and the form of the similarity 
variable used to reduce the diffusion equation 
to an ordinary differential equation. It should 
be noted that only equation (59) is inapplicable; 
it can be shown that the general treatment of 
the diffusion equation described here and the 
assumption concerning the equality of the shear 
stresses at the wall are valid. In order that a 
diffusion boundary layer exist in a pipe, the 
active mass-transfer section must be short. 

This definition is chosen because it is directly ob- 
tainable from experimental data, i.e. from rate 
and volumetric concentration measurements. 
Other definitions of the mass-transfer coefficient 
have appeared in the literature, involving the use 
of a diffusive flux (total flux minus the convective 
contribution at the surface) and the mass- 
fraction driving force (e.g. [3]). However, the 
diffusive flux is inconvenient in that it is not 
immediately related to a material balance in- 
volving other parts of the system (for instance, 
as in the packed-tower-material balance equa- 
tions), and the use of mass fraction is incon- 
venient since most equilibrium and analytical 
data are available as volumetric concentrations. 
This choice, however, is completely arbitrary, 
and in no way affects the final result. 

For a mass-transfer process characterized by 
the parameter S, the rate is given by 

N = - M[1- wo(l-_]* (61) 

From equations (60) and (61) and the 
dimensionless reduction 7 = y/L, a local Sher- 
wood number can be obtained as 

The applicability of equation (59) must, 
therefore, be restricted to a class of hydro- 
dynamic situations which might be described as 
free. or external, flows in which the moving 
fluid is not completely surrounded by a solid 
surface. In the flat-plate and rotating-disk 
geometries, the fluid extends to infinity in one 
direction. In the falling-film system, one bound- 
ary of the fluid is a gas-liquid interface, which 

Co - t~ol~&'m 
~- 

co - cm 
(64 

The appropriate length L can be obtained 
from equations (7), (25) or (33) for the three 
cases considered. 

The [l - W,(l + S)] term in the Sherwood 
number appears because of the choice of the 
total rather than the diffusive flux in the defini- 
tion of the mass-transfer coefficient. Its 



incorporation into the Sherwood number follows 
the common practice in the gas-absorption 
literature of treating the “log mean partial 
pressure of the inert gas” (i.e. PBM) term in the 
same manner. The bracketed term on the right 
of equation (62) arises from the definition of k, 
in terms of the concentration driving force. 
It disappears if k, is defined on a mass-fraction 
driving-force basis, or if there is no density 
change with composition. 
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however, are intrinsic to the analysis and do not 
depend on any arbitrary definitions. For internal 
or duct flows with short mass-transfer sections, 
the last term on the right of equations (65) and 
(66) should be replaced by &,uo. 

The characteristic length L of equation (62), 
the exponent m and the parameter a* of equation 
(65) are listed in Table 1 for the three external 
flows which have been treated in detail. 

Using equations (3) and (39), equation (62) 
becomes 

Table 1. Specific parameters for each flow geometry 

where 

Flow 

(63) geometry L m a* 

Flat 
plate 4 0.083 [6b] 

(64) 

Since 0*‘(O) = - l/l,(cc) = - 1.12, substi- 
tution of equations (48) and (59) into equation 
(63) yields : 

Sh = (1.12 (F),.> KR (=)“I” (65) 

where the Sherwood number, defined by 
equation (62), is based on properties at the 
surface, and K is defined by equation (64). 
Equation (65) gives the absolute value of the 
Sherwood number if the hydrodynamic para- 
meter (CL*) of the particular geometry is known. 
Since the bracketed term in the above relation is 
the Sherwood number for constant properties 
and zero interfacial velocity, equation (65) can 
also be written in a form useful when a* is not 
known : 

(66) 

The effect of variable density, diffusivity and 
viscosity and of non-zero interfacial velocity is 
manifest by a deviation of the right-hand side of 
equation (66) from unity. It should be noted, 
however, that the factor K in this expression is 
somewhat arbitrary, inasmuch as it stems from 
the definition of the mass-transfer coefficient in 
terms of a concentration driving force. If the 
weight-fraction potential had been employed, 
the K would be identically unity. The R term 
and the ratio of the viscositv-densitv Products. 

(v) Indirectly in the definition of the mass- 
transfer coefficient. 

The foregoing analysis has completely accounted 
for density variations in (i) amd (v) by the R and 
K terms of equations (48) and (64). The effect 
of (iii) results in the appearance of the density 
ratio in equation (59). Effect (ii) appears in the 
L integral in equation (16), and the error incurred 
by neglecting it in the diffusion equation is 
estimated at ~1 per cent for an extreme case. 

, 2 & ~~---I For the horizontal flat plate and rotating disk, 

Rotating 
disk 4 0.510 [3, 131 

Falling 
film 

“OX l/3 

(-1 a0 
5 4 

a,, given by equation (34). 

NATURAL CONVJXTION 

There are five places in the system of equations 
governing the mass-transfer process where the 
density appears : 

(i) In the diffusion equation. 
(ii) In the over-all continuity equation. 

(iii) Multiplying the convective terms of the 
equation of motion. 

(iv) As an additional buoyancy term in the 
equation of motion. 
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natural convection will appear only if the bulk 
fluid is denser than the fluid at the surface. 
Otherwise, the stratified flow is stable. For other 
orientations of these two geometries, and for 
pipe flow, natural convection may occur unless 
Ep = 0. 

In general, equations (65) or (66) are strictly 
applicable only to systems in which the density 
gradient results in stable stratification. If 
natural convection is significant, the last term on 
the right in these two expressions must be 
modified to include this effect, e.g. as in [l l] for 
pipe flow. 

I 02 I I 1 
0 004 008 0.12 0.16 020 0.24 

W 

FIG. 3. Diffusivities of three binary liquid systems 
as a function of composition-CuSo,-H,O [14]; 

H,O-n-butanol [15]; HCl-H,O [16]. 

EXAMPLESt 

One of the first questions which arises in 
connection with the previous analysis is this: 
How well do variations in density and diffusivity 
in typical binary liquids follow the restricted 
form represented by equations (3) and (4) ? 
The appropriate data for three systems, chosen 
because of their relatively large diffusivity 
variation with composition, are plotted on Figs. 
3 and 4. It is evident that the exponential 
variation of the two properties with mass fraction 
is reasonably well followed, except for the 
curvature of the diffusivities of the two inorganic 
systems at low dilution. 

A number of sample calculations are shown in 
Table 2 for a geometry characterized by m = 4 
(e.g. flat plate or rotating disk). The systems 
considered are : 

(a) Solid CuSO, * 5Hz0 transferring to a free 
stream of pure water. 

(b) CuSO, transferring from a saturated free 
stream to a surface at which the copper con- 
centration is reduced to zero (e.g. electrolytic 
deposition of copper under the conditions of 
limiting current). 

(c) Transfer of water from a water phase 
saturated with n-butanol (alcohol mass frac- 
tion = 0.074) through a rigid interface to an 
alcohol main stream in which the water content 
is O-035 mass fraction. 

(d) Transfer of HCI from a surface at which 
its concentration is 4 molar to a pure water free 
stream. 

t All data are from the International Critical Tables 
or the Landolt-Biirnstein Tabelen, except as noted. 

FIG. 4. Densities of three binary liquid systems as a function of composition. 
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Table 2. E’ect of property uQrjaf~o~ and jffterfucial velocity on the tronsjtir rate for varims systems 
___- 

- 

: 0 0.186 0 0.186 0.57 
Z.08 0 

-0.18 @i8 -0-38 0.38 -0.186 0.41 0.83 l-11 0.84 1 @84 I.19 0.70 1.10 
: o-210 0.136 0035 0 -0@4 -0*06 --0.53 1.54 0.24 0.155 1.29 0.80 I 1 O-98 0.95 0.76 1.26 

e 0 0,136 0 0.06 0.53 -0.134 1.30 0.94 l*OS 1.28 

~- ..- 

(e) The reverse of(d) with the same concentra- 
tion driving force. 

The existence of variable properties and inter- 
facial velocity can result in a 30 per cent deviation 
of the actual rate from the value calculated 
without considering these effects. A marked 
dependence upon the direction of transfer is 
also evident. 

CONCLUSIONS 

Since the method presented here involves 
numerous approximations, a summary of the 
most important ones is in order. 

(1) The diffusion coefficient in equation (l), 
although in general a function of concentration, 
is not a function of the ratio of the solvent and 
solute mass fluxes (Appendix A). 

(2) The density of the mixture and its diffusion 
coefficient are simple exponential functions of 
mass fraction. 

(3) The effect of variable density in the over-all 
continuity equation is neglected (see Appendix 
B). 

(4) Within the diffusion boundary layer, the 
velocity parallel to the surface varies linearly 
with normal distance. 

(5) The slope of the parallel velocity com- 
ponent near the surface is independent of the 
interfacial velocity. 

(6) The deviation of the slope of the parallel 
velocity component from its constant-property 
value can be calculated by assuming that the 
shear stress behaves as if the free-stream physical 
properties extended to the surface and that 
P =! PO. 

(7) The ratio Do/D in equation (40) can be 
approximated by use of the unperturbed 
concentration profile [see equation (44) et seq.]. 

(8) The parameters gPPt ED and cv must be 
small enough such that the complete second- 
order perturbation series is a sufficiently 
accurate appro~matjon to the exact solution 
of equation (40). 

(9) Density gradients must result in stable 
s~atification; natural convection is not con- 
sidered. 

Assumptions (4-6) restrict the analysis to 
large Schmidt numbers. The question as to what 
constitutes a sufficiently large Schmidt number 
depends upon the particular flow geometry; it 
appears that, in the absence of free convection, 
no more than a 5-10 per cent error in the absolute 
value of the gradient at the surface will be in- 
curred at SC > 100 (which includes most 
binary liquids). The ratio of the actual gradient 
to that for the zero-mass transfer, constant- 
property system will be more accurate than the 
absolute value. 

Additional improvements in the calculational 
methods presented here could be achieved by 
inco~orating the effects of variable density in 
the over-all continuity equation [L(r)) of equation 
(16)J and viscosity variations [the integral of 
equation (54)J. The present analysis slightly 
overestimates the effect of viscosity variations 
and underestimates the consequences of density 
changes. 

Although the analysis has been presented in 
terms of solid-liquid systems, it should apply 
to liq~d-liq~d mass transfer if the interface is 
rigid and the flow laminar. 
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APPENDIX At 

Derivation of the dtjkion equation 

steady state the relation describing conserva- 
tion of a diffusing species in a nonreacting 
medium can be written as: 

T. nj = 0 (A-1) 

where nr is the mass flux of species i relative to a 
stationary observer and is related to the diffusion 
velocity III by: 

ni = pilli 64-2) 

where pi is the mass concentration of species 
i (grams of i/cm”). 

A diffusive flux relative to the mass average 
velocity is defined by: 

ji = pt(ui - V) (A-3) 

where V is the mass average or convective 
velocity of the mixture: 

v = C PiUi p= i W, 
lb. (A-4) 

P 

Utilizing these definitions and the over-all 
continuity equation [V . (pV) = 01, equation 
(A- 1) becomes 

pV*CWi =V*jl. (A-5) 

The species conservation requirement. 
equation (A-l) or (A-5), become the “diffusion” 
equation upon introduction of an appropriate 
relation for j, in terms of a diffusion coefficient. 
For a binary mixture, the definition of D 
proposed by Chapman and Cowling [17] is 
almost universally utilized: 

ji = - pDVWi. (-4-6) 

For ideal gases at constant pressure, equation 
(A-6) is identical to the Maxwell-Stephan 
diffusion coefficient. Inserting equation (A-6) 
in equation (A-5), 

pV * T Wi = V(pDV Wt). (A-7) 

The derivation of equation (A-7) emphasizes 
its dependence upon a particular definition of 
the diffusion coefficient, i.e. equation (A-6), 
which was originally proposed from considera- 
tions of the kinetic behavior of gases. 

By applying the thermodynamic relations : 

i; vicj = 1 
I 

I (A-8) 
i: rfddCi =0 J 

t The symbols used in Appendix A are essentially 
those of Bird et al. [S]. Subscript i refers to a particular 
species in the mixture and bold-face type denotes a 
vector quantity. 
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where rf is the partial molar volume of species i 1 9 
in the mixture, it can be shown that, for a binary, L(7)) = - __ 

equation (A-6) can be written as: 
s Pff(d 0 

PHIL; h. (B-1) 

Ci(ur - V+) = - DVC,. (A-9) 
Since only the magnitude of L(q) compared 

to unity is of interest, and since density‘variations 

The left-hand side of equation (A-9) is the in a liquid are generally quite small (a 25 per 

diffusive flux of i relative to the volume average cent variation over the boundary layer is greater 

velocity, which is defined by: than is usually encountered), the variation of 

6 _ 
p with 7 in the integrand equation (B-l) will be 

v+ = c CrV& (A-10) neglected, and L(v) written as: 

Measurements of liquid diffusivities are 
generally based upon equation (A-9) rather than 

L(T) 2: - ‘c 
s 
’ H(q) $; d?. 

H(T) o 
(B-2) 

equation (A-6), although the two relations are 
equivalent definitions of D. If the volume average Consider the zero-mass-transfer case, for 

velocity is zero, equation (A-9) reduces to Fick’s which 

first law: H(T) = - UT,?. (B-3) 

N* = Ciur = -DVC,. (A-l 1) Substituting equation (B-3) into equation (B-2) 

Many experimental devices for measuring 
and transforming to the X-co-ordinate of 

liquid diffusivities, e.g. capillary or diaphragm 
equation (39), there results: 

cells, approximate processes in which no bulk 
volume occurs and equation (A-11) is valid. 
This simplification is exact if the partial molar 

L(x) = - $ 
s 
1 x2 !f dx. 

dx 
(B-4) 

volumes of the two components in the mixture Approximating d8/dx from the constant- 
are equal to the molar volumes of the pure sub- property, zero-mass-transfer solution : 
stances (i.e. if there is no volume change on 
mixing). However, for the highly non-ideal de exp (- x3) _=_ 
systems for which the methods outlined in this dx ho * 
paper have been developed, this is not the case; 
the diffusion coefficients measured by use of 

Equation (B-4) becomes 

equation (A-11) are not identical to those 
defined by equation (A-6) and employed in 
equation (A-7). While this discrepancy is prob- 

Ux) = j&j+ 
0 s ’ x2 exp (-- x3) dx. (B-5) 

0 

ably small, it may not be negligible. Analysis of The integral in equation (B-5) can be evaluated 

diffusion experiments should account for volume analytically, and L(x) given by: 

changes on mixing by employing equation (A-9) 
rather than equation (A-l 1). 

L(X) = E&X) (B-6) 

where 

APPENDIX B 1 - exp (- x3) 
Error in the solution of the diffusion equation fc&) = -~ (B-7) 

due to neglecting density variations in the over-all 
3Zo(~)X2 * 

continuity equation The maximum value of the function K&j is 

Since dp/dv = (d0/dT)(dp/dB), and from 
approximately O-25. For a 25 per cent change in 

equation (3) dp/d0 = - pep, equation (16) 
density over the boundary layer, cp 2: 0.2, and 

becomes : t 
the additional term, L(x), is always less than 
5 per cent of unity. 

t Since the analysis of this effect is identical for a flat 
The effect of the function L on the cP co- 

plate and a rotating disk, H(v) can be replaced byf(v) in efficient of the perturbation analysis can be 
equation (B-l). obtained by considering the special case of 
ZL 
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equation (23) (transformed into the x-co- 
ordinate) for which EV = ED = 0: 

8” + {3x2[1 - <,I+)] - +‘}0’ = 0. (B-S) 

A truncated expansion for 0 can be assumed as 

e = e* + g2,. (B-9) 

When equation (B-9) is substituted into equation 
(B-S) and the coefficients of E,, collected and set 
equal to zero, there results 

sz; + 3x2~; = (e*y + 3X2Kh)e*’ (~-10) 

which, with the boundary conditions 

Q,(O) = Qr(c0) = 0 

and K(X) given by equation (B-7), 
to yield 

Q;(O) = - 0.634. 

can be solved 

If L(x) is neglected, the computed value of 
Q;(O) is - O-56. The effect on the other terms 
containing cp would probably be of the same 
order of magnitude or less. With cP = 0.2, the 
error introduced by using Q;(O) = - 0.56 
instead of - 0.634 is of the order of 1 per cent, 
and is considered negligible. Neglecting L(x) in 
equation (23) is equivalent to assuming the flow 
to be incompressible, except for the c,(df?/dy) 
term in the diffusion equation. In this sense the 
analysis is equivalent to that usually applied to 
free convection, in which the effect of variable 
density is considered only in the buoyancy term. 

Zusammenfassung-Mit Hilfe einer Storungsmethode wurde der Einfluss zusammenwirkender Dichte-, 
Temperaturleitfahigkeits- und Zahigkeitsanderungen sowie der Geschwindigkeit an der Trennflache 
auf die Stofftibergangsgeschwindigkeit von einer festen Oberflache untersucht. Die Analyse umfasst 
nicht die freie Konvektion und beschrlnkt sich auf Systeme hoher Schmidt-Zahlen (untere Grenze 
angenommen zu SC = lOO), ftir welche das Geschwindigkeitsprofil in der Diffusionsgrenzschicht 
linear ist. Die Diffusionsgleichungen fiir drei verschiedene Striimungsgeometrien-die rotierende 
Scheibe, die ebene Platte und den fallenden Fliissigkeitsfilm-sind bei hohen Schmidtzahlen in ihrer 
Form identisch; der Einfluss der jeweiligen Geometrie ist in einem einzigen Parameter berticksichtigt, 
der ftir die Grenzkurve des Geschwindigkeitsprofils nahe der Oberflache charakteristisch ist. Die 
Anwendung auf drei typische Binlrsysteme ergab fiir verinderliche Stoffwerte und Geschwindigkeiten 
an der Trenntlache eine Abweichung der Sherwood-Zahl bis zu 30 Prozent von jenen Werten, die 
ohne diese Vorglnge gefunden wurden. Die Korrekturen fur veranderliche Stoffwerte und Geschwin- 
digkeiten an der Trennflache sind mijglicherweise auf einen vie1 grosseren Bereich von Stromungen 
an festen Begrenzungen anwendbar als nur auf die drei hier untersuchten Falle und auf Fliissigkeit- 

Fliissigkeit Systeme, deren Trennflache als Starr gelten kann. 

AHHoTaqmI-MeTOHOM BO3MJ'IIJeHPIi-i IlCCJIeROBaJIOCb COBMeCTHOe BJIII~HIIH O~HOBpeMeHHOrO 

I13MeHeHHH IIJIOTHOCTH, BFI3KOCTH. K03@@RIJHeHTa ~M@&'3ElK M CitOpOCTH J'HOCa BeueCTBa 

C TBepAOi IIOBepXHOCTII pa3neJla Ha HHTeHCHBHOCTb MaCCOOTJJaWI. %IHHHHe eCTeCTB‘?HHOI? 

KOHBeKIJlilI He y%lTbIBaJIOCb. AHam 6bIJI OrpaHWleH CPICTeMaMll C 6OJIbI"liMYr WICJIaMM 

DMlInTa (He HLilfEe loo), ,QJlH KOTOpbIX IIpO@UIb CKOpOCTH B ~I4~@y3"0HHOM EIOrpaHINHOM 

CJIOe JIHHeiHbIti. npEl 6OJIbIIIHX 3Ha9eHHRX KpllTepllR LUMElJJTa J'paBHeHLlR ,Wi()4y3"M 

OKa3bIBaIOTCR HAeHTRYHbIMIi n0 4OpMe JQJIR TpeX pa3JIWIHbIX THIIOB TeqeHIlti: BpaIIJa- 

mqerocx AmKa, nnocKo2i macTmm If IUISHKEI cTeKam4eti H(M~K~CTII; BnmHne reomeTprf- 

YeCRIlX +aKTOpOB IIpeACTaBLIeHO OTAeJIbHbIM IIapaMeTpOM, KoTopbiir xapaKTepn3yeTcn 

IIpeAenbHbIM HaKJIOHOM IIpO@UIR CKOpOCTli J' IIOBepXHOCTLi. nplIMeHeHHe MeTOAa K TptiM 

TLIIIIi'IHbIM 6LiHapHbIM CLlCTeMaM IIOKa3aJI0, YTO J'Ka3aHHbIe BbIIIIe (PaKTOpbI MOrYT H3MeHFITb 

3Ha~Iemre ripnrepnn BIepsyna Ha 30% 0~ ero 3HaqeHm np~ ~TCYTCTBL~H MaccooTflam c 

~OBepXHOCTElpa3~e~a.~O~paBKtnHa~I3MeHeH~e~~~3~~~ecK~x~~0iic~~~pIlHa~~~~~~~CKOpOCTl~ 

Ha IIOBepXHOCTI% pa3AeJIa MOrYT 6bITb paCIIpOCTpaHeHb1, KpOMe T@X paCCMOTpeHHbIX 3aAaY, 

Ha ropasno donee runpo~cnb Kmacc IIOTOKOB ~6~1~1311 Tsepnoti rpamqb1, a TaKltEe Ka mcTeMbI 

EU,I~KOCTb-?KHAKOCTb C TBepAOti IIOBepXHOCTblO pa3ne.?a. 


